Descrever As Diferenças Entre Movimentação Médias E Exponencial Suavização
Suavização Exponencial Explicada. Cópia Copyright. O conteúdo do InventoryOps é protegido por direitos de autor e não está disponível para republicação. Quando as pessoas primeiro encontro o termo suavização exponencial podem pensar que soa como um inferno de um lote de suavização. Seja qual for a suavização. Eles então começam a imaginar um cálculo matemático complicado que provavelmente requer um grau em matemática para entender, e espero que haja uma função embutida do Excel disponível se eles precisam fazer isso. A realidade da suavização exponencial é muito menos dramática e muito menos traumática. A verdade é, suavização exponencial é um cálculo muito simples que realiza uma tarefa bastante simples. Ele só tem um nome complicado porque o que tecnicamente acontece como resultado deste cálculo simples é realmente um pouco complicado. Para entender a suavização exponencial, ajuda a começar com o conceito geral de suavização e um par de outros métodos comuns usados para obter suavização. O que é suavização A suavização é um processo estatístico muito comum. De fato, nós encontramos regularmente dados alisados em várias formas em nossas vidas do dia-a-dia. Toda vez que você usar uma média para descrever algo, você está usando um número suavizado. Se você pensar sobre porque você usa uma média para descrever algo, você compreenderá rapidamente o conceito do alisamento. Por exemplo, nós apenas experimentamos o inverno mais quente no registro. Como somos capazes de quantificar este Bem, começamos com conjuntos de dados das temperaturas altas e baixas diárias para o período que chamamos de Inverno para cada ano na história registrada. Mas isso nos deixa com um monte de números que saltam um pouco (não é como todos os dias este inverno foi mais quente do que os dias correspondentes de todos os anos anteriores). Precisamos de um número que elimine tudo isso pulando em torno dos dados para que possamos mais facilmente comparar um inverno para o próximo. Removendo o salto em torno dos dados é chamado de suavização, e neste caso, podemos apenas usar uma média simples para realizar a suavização. Na previsão de demanda, usamos suavização para remover a variação aleatória (ruído) de nossa demanda histórica. Isso nos permite identificar melhor os padrões de demanda (principalmente tendência e sazonalidade) e os níveis de demanda que podem ser usados para estimar a demanda futura. O ruído na demanda é o mesmo conceito que o saltar diário dos dados da temperatura. Não é de surpreender que a forma mais comum de as pessoas removerem o ruído da história de demanda seja usar uma média simples ou mais especificamente uma média móvel. Uma média móvel apenas usa um número predefinido de períodos para calcular a média, e esses períodos se movem com o passar do tempo. Por exemplo, se eu estou usando uma média móvel de 4 meses, e hoje é 01 de maio, estou usando uma média de demanda que ocorreu em janeiro, fevereiro, março e abril. No dia 1º de junho, estarei usando a demanda de fevereiro, março, abril e maio. Média móvel ponderada. Ao usar uma média, estamos aplicando a mesma importância (peso) a cada valor no conjunto de dados. Na média móvel de 4 meses, cada mês representava 25 da média móvel. Ao usar o histórico de demanda para projetar a demanda futura (e especialmente a tendência futura), é lógico chegar à conclusão de que você gostaria que a história mais recente tivesse um impacto maior em sua previsão. Podemos adaptar nosso cálculo de média móvel para aplicar vários pesos a cada período para obter os resultados desejados. Nós expressamos esses pesos como porcentagens eo total de todos os pesos para todos os períodos deve somar 100. Portanto, se decidimos que queremos aplicar 35 como o peso para o período mais próximo em nossa média móvel ponderada de 4 meses, podemos Subtrair 35 de 100 para encontrar temos 65 restantes para dividir sobre os outros 3 períodos. Por exemplo, podemos terminar com uma ponderação de 15, 20, 30 e 35, respectivamente, para os 4 meses (15 20 30 35 100). Suavização exponencial. Se voltarmos ao conceito de aplicar um peso ao período mais recente (como 35 no exemplo anterior) e espalhar o peso restante (calculado subtraindo o peso do período mais recente de 35 de 100 para obter 65), temos Os blocos de construção básicos para o nosso cálculo de suavização exponencial. A entrada de controle do cálculo de suavização exponencial é conhecida como o fator de suavização (também chamado de constante de suavização). Representa essencialmente a ponderação aplicada aos períodos mais recentes de procura. Então, onde usamos 35 como ponderação para o período mais recente no cálculo da média móvel ponderada, também poderíamos escolher usar 35 como o fator de suavização em nosso cálculo de suavização exponencial para obter um efeito semelhante. A diferença com o cálculo de suavização exponencial é que, em vez de termos que calcular também quanto peso aplicar a cada período anterior, o fator de suavização é usado para fazer isso automaticamente. Então aqui vem a parte exponencial. Se usarmos 35 como o fator de alisamento, a ponderação dos períodos mais recentes exigirá 35. A ponderação dos próximos períodos mais recentes demanda (o período antes do mais recente) será 65 de 35 (65 vem de subtrair 35 de 100). Isso equivale a 22,75 ponderação para esse período, se você fizer a matemática. Os próximos períodos mais recentes demanda será de 65 de 65 de 35, o que equivale a 14,79. O período antes disso será ponderado como 65 de 65 de 65 de 35, o que equivale a 9,61, e assim por diante. E isso vai de volta através de todos os seus períodos anteriores todo o caminho de volta para o início do tempo (ou o ponto em que você começou a usar suavização exponencial para esse item específico). Você provavelmente está pensando que está olhando como um monte de matemática. Mas a beleza do cálculo de suavização exponencial é que, ao invés de ter que recalcular cada período anterior cada vez que você recebe uma nova demanda de períodos, basta usar a saída do cálculo de suavização exponencial do período anterior para representar todos os períodos anteriores. Você está confuso ainda Isso fará mais sentido quando olharmos para o cálculo real Normalmente nos referimos à saída do cálculo de suavização exponencial como a próxima previsão de período. Na realidade, a previsão final precisa de um pouco mais de trabalho, mas para os propósitos deste cálculo específico, vamos nos referir a ele como a previsão. O cálculo de suavização exponencial é o seguinte: Os períodos mais recentes demandam multiplicado pelo fator de suavização. PLUS Previsão dos períodos mais recentes multiplicada por (um menos o factor de suavização). D os períodos mais recentes exigem S o fator de suavização representado em forma decimal (então 35 seria representado como 0,35). F os períodos mais recentes previstos (a saída do cálculo de suavização do período anterior). OR (assumindo um fator de suavização de 0,35) (D 0,35) (F 0,65) Não é muito mais simples do que isso. Como você pode ver, tudo o que precisamos para entradas de dados aqui são os períodos mais recentes de demanda e os períodos mais recentes previstos. Aplicamos o fator de suavização (ponderação) aos períodos mais recentes exigir da mesma forma que faria no cálculo da média móvel ponderada. Aplicamos então a ponderação restante (1 menos o factor de alisamento) aos períodos mais recentes previstos. Uma vez que a previsão de períodos mais recente foi criada com base na demanda de períodos anteriores e nos períodos anteriores, que se baseou na demanda do período anterior e na previsão para o período anterior, baseada na demanda do período anterior E a previsão para o período anterior, que se baseou no período anterior. Bem, você pode ver como todos os períodos anteriores demanda são representados no cálculo sem realmente voltar e recalcular qualquer coisa. E isso é o que levou a popularidade inicial de suavização exponencial. Não era porque fêz um trabalho melhor de suavização do que a média móvel ponderada, era porque era mais fácil de calcular em um programa de computador. E, porque você não precisa pensar sobre o que ponderar para dar períodos anteriores ou quantos períodos anteriores para usar, como você faria na média móvel ponderada. E, porque soava mais frio do que a média móvel ponderada. Na verdade, pode-se argumentar que a média móvel ponderada proporciona maior flexibilidade, uma vez que você tem mais controle sobre a ponderação dos períodos anteriores. A realidade é que qualquer um destes pode fornecer resultados respeitáveis, então por que não ir com soar mais fácil e mais fresco. Suavização exponencial no Excel Permite ver como isso seria realmente olhar em uma planilha com dados reais. Cópia Copyright. O conteúdo do InventoryOps é protegido por direitos de autor e não está disponível para republicação. Na Figura 1A, temos uma planilha Excel com 11 semanas de demanda, e uma previsão exponencial suavizada calculada a partir dessa demanda. Eu usei um fator de suavização de 25 (0,25 na célula C1). A célula ativa atual é Cell M4 que contém a previsão para semana 12. Você pode ver na barra de fórmula, a fórmula é (L3C1) (L4 (1-C1)). Portanto, as únicas entradas diretas a esse cálculo são a demanda de períodos anteriores (célula L3), os períodos prévios previstos (célula L4) e o fator de suavização (célula C1, mostrada como referência de célula absoluta C1). Quando começamos um cálculo de suavização exponencial, precisamos conectar manualmente o valor para a 1ª previsão. Assim, na célula B4, em vez de uma fórmula, acabamos de digitar a demanda a partir do mesmo período que a previsão. Na Célula C4 temos o nosso primeiro cálculo exponencial de suavização (B3C1) (B4 (1-C1)). Podemos então copiar Célula C4 e colá-lo em Células D4 através de M4 para preencher o resto de nossas células de previsão. Agora você pode clicar duas vezes em qualquer célula de previsão para ver se é baseado na célula de previsão de períodos anteriores e na célula de demanda de períodos anteriores. Assim, cada subsequente cálculo de suavização exponencial herda a saída do cálculo de suavização exponencial anterior. É assim que cada demanda de períodos anteriores é representada no cálculo dos períodos mais recentes, mesmo que esse cálculo não faça referência direta a esses períodos anteriores. Se você quiser obter fantasia, você pode usar Excels trace antecedentes função. Para fazer isso, clique em Célula M4 e, em seguida, na barra de ferramentas da faixa de opções (Excel 2007 ou 2010), clique na guia Fórmulas e, em seguida, clique em Rastrear precedentes. Ele irá desenhar linhas de conector para o primeiro nível de precedentes, mas se você continuar clicando em Trace Precedents, desenhará linhas de conector para todos os períodos anteriores para mostrar os relacionamentos herdados. Agora vamos ver o que suavização exponencial fez por nós. A Figura 1B mostra um gráfico linear de nossa demanda e previsão. Você pode ver como a previsão exageradamente suavizada remove a maior parte do jaggedness (saltando ao redor) da demanda semanal, mas ainda consegue seguir o que parece ser uma tendência ascendente na demanda. Você também notará que a linha de previsão suavizada tende a ser menor do que a linha de demanda. Isso é conhecido como atraso de tendência e é um efeito colateral do processo de alisamento. Toda vez que você usar suavização quando uma tendência está presente sua previsão ficará atrás da tendência. Isto é verdade para qualquer técnica de suavização. De fato, se continuássemos esta planilha e começássemos a inserir números de demanda mais baixos (fazendo uma tendência descendente), veríamos a queda da linha de demanda ea linha de tendência se mover acima dela antes de começar a seguir a tendência descendente. É por isso que eu mencionei anteriormente a saída do cálculo exponencial suavização que chamamos de uma previsão, ainda precisa de algum trabalho mais. Há muito mais a previsão do que apenas alisar as colisões na demanda. Precisamos fazer ajustes adicionais para coisas como defasagem de tendência, sazonalidade, eventos conhecidos que podem afetar a demanda, etc. Mas tudo isso está além do escopo deste artigo. Provavelmente, você também corre em termos como suavização exponencial dupla e suavização tripla exponencial. Estes termos são um pouco enganador, uma vez que você não está re-suavização da demanda várias vezes (você poderia se você quiser, mas isso não é o ponto aqui). Estes termos representam o uso de suavização exponencial em elementos adicionais da previsão. Assim, com a suavização exponencial simples, você está suavizando a demanda básica, mas com a suavização exponencial dupla você está suavizando a demanda base mais a tendência e com a suavização exponencial tripla você está suavizando a demanda base mais a tendência mais a sazonalidade. A outra pergunta mais comumente questionada sobre a suavização exponencial é onde faço para obter o meu fator de suavização Não há nenhuma resposta mágica aqui, você precisa testar vários fatores de suavização com seus dados de demanda para ver o que você recebe os melhores resultados. Existem cálculos que podem definir automaticamente (e alterar) o fator de suavização. Estes se enquadram no termo alisamento adaptativo, mas você precisa ter cuidado com eles. Simplesmente não há uma resposta perfeita e você não deve aplicar cegamente qualquer cálculo sem testes minuciosos e desenvolver uma compreensão completa do que esse cálculo faz. Você também deve executar cenários de ocorrência para ver como esses cálculos reagem às mudanças de demanda que talvez não existam atualmente nos dados de demanda que você está usando para testes. O exemplo de dados que eu usei anteriormente é um bom exemplo de uma situação em que você realmente precisa testar alguns outros cenários. Esse exemplo de dados particulares mostra uma tendência ascendente um tanto consistente. Muitas grandes empresas com software de previsão muito caro entrou em grande problema no passado não tão distante quando suas configurações de software que foram ajustadas para uma economia em crescimento não reagiram bem quando a economia começou a estagnar ou encolher. Coisas como esta acontecem quando você não entende o que seus cálculos (software) está realmente fazendo. Se eles entendessem seu sistema de previsão, eles teriam sabido que precisavam pular e mudar algo quando havia mudanças súbitas e dramáticas em seus negócios. Então, você tem o básico de suavização exponencial explicado. Quer saber mais sobre o uso de suavização exponencial em uma previsão real, confira o meu livro Inventory Management Explained. Cópia Copyright. O conteúdo do InventoryOps é protegido por direitos de autor e não está disponível para republicação. Dave Piasecki. É owneroperator de Inventário Operations Consulting LLC. Uma empresa de consultoria que presta serviços relacionados à gestão de inventário, manuseio de materiais e operações de armazém. Possui mais de 25 anos de experiência em gestão de operações e pode ser alcançado através de seu website (inventoryops), onde mantém informações adicionais relevantes. Meus Métodos da Série BusinessTime Métodos da série de tempo são técnicas estatísticas que fazem uso de dados históricos acumulados durante um período de tempo. Os métodos da série temporal assumem que o que ocorreu no passado continuará a ocorrer no futuro. Como sugere a série temporal de nomes, esses métodos relacionam a previsão a apenas um fator - tempo. Eles incluem a média móvel, suavização exponencial e linha de tendência linear e estão entre os métodos mais populares para a previsão de curto prazo entre as empresas de serviços e de fabricação. Esses métodos pressupõem que padrões históricos identificáveis ou tendências para a demanda ao longo do tempo se repetirão. Média móvel Uma previsão de séries de tempo pode ser tão simples como usar a demanda no período atual para prever a demanda no próximo período. Isso às vezes é chamado de previsão ingênua ou intuitiva. 4 Por exemplo, se a demanda é de 100 unidades esta semana, a previsão para as próximas semanas demanda é de 100 unidades, se a demanda acaba por ser 90 unidades, em seguida, as semanas seguintes demanda é de 90 unidades, e assim por diante. Esse tipo de método de previsão não leva em conta o comportamento histórico da demanda, que se baseia apenas na demanda no período corrente. Ele reage diretamente aos movimentos normais, aleatórios na demanda. O método de média móvel simples usa vários valores de demanda durante o passado recente para desenvolver uma previsão. Isso tende a atenuar, ou suavizar, os aumentos aleatórios e diminuições de uma previsão que usa apenas um período. A média móvel simples é útil para prever a demanda que é estável e não exibe qualquer comportamento de demanda pronunciado, como uma tendência ou padrão sazonal. As médias móveis são calculadas para períodos específicos, como três meses ou cinco meses, dependendo de quanto o meteorologista deseja suavizar os dados da demanda. Quanto mais longo for o período de média móvel, mais suave será. A fórmula para computar a média móvel simples é computar uma média movente simples A empresa instantânea da fonte do escritório do grampo do papel vende e entrega materiais de escritório às companhias, às escolas, e às agências dentro de um raio de 50 milhas de seu armazém. O negócio de suprimentos de escritório é competitivo, ea capacidade de entregar ordens prontamente é um fator para obter novos clientes e manter os antigos. (Os escritórios geralmente não exigem quando eles correm baixos suprimentos, mas quando eles acabam completamente fora. Como resultado, eles precisam de suas ordens imediatamente.) O gerente da empresa quer ser determinados drivers e veículos estão disponíveis para entregar ordens prontamente e Eles têm estoque adequado em estoque. Portanto, o gerente quer ser capaz de prever o número de pedidos que ocorrerão durante o próximo mês (ou seja, para prever a demanda por entregas). A partir de registros de ordens de entrega, a gerência acumulou os seguintes dados para os últimos 10 meses, a partir do qual pretende calcular média móvel de 3 e 5 meses. Vamos supor que é o fim de outubro. A previsão resultante da média móvel de 3 ou 5 meses é tipicamente para o próximo mês na seqüência, que neste caso é novembro. A média móvel é calculada a partir da demanda por ordens para os 3 meses anteriores na seqüência de acordo com a seguinte fórmula: A média móvel de 5 meses é calculada a partir dos dados de demanda de 5 meses anteriores como segue: A média móvel de 3 e 5 meses As projeções de média móvel para todos os meses de demanda são mostradas na tabela a seguir. Na verdade, apenas a previsão para novembro com base na demanda mensal mais recente seria usada pelo gerente. No entanto, as previsões anteriores para meses anteriores nos permitem comparar a previsão com a demanda real para ver quão preciso é o método de previsão - ou seja, quão bem ele faz. Médias de três e cinco meses As previsões de média móvel na tabela acima tendem a suavizar a variabilidade que ocorre nos dados reais. Este efeito de alisamento pode ser observado na seguinte figura em que as médias de 3 meses e 5 meses foram sobrepostas em um gráfico dos dados originais: A média móvel de 5 meses na figura anterior suaviza as flutuações em maior extensão do que A média móvel de 3 meses. No entanto, a média de 3 meses reflete mais de perto os dados mais recentes disponíveis para o gerente de suprimentos de escritório. Em geral, as previsões usando a média móvel de longo prazo são mais lentas para reagir às mudanças recentes na demanda do que aquelas feitas usando médias móveis de período mais curto. Os períodos extras de dados atenuam a velocidade com a qual a previsão responde. Estabelecer o número apropriado de períodos para usar em uma média móvel de previsão muitas vezes requer alguma quantidade de experimentação de tentativa e erro. A desvantagem do método da média móvel é que não reage a variações que ocorrem por uma razão, tais como ciclos e efeitos sazonais. Os fatores que causam mudanças são geralmente ignorados. É basicamente um método mecânico, que reflete dados históricos de forma consistente. No entanto, o método da média móvel tem a vantagem de ser fácil de usar, rápido e relativamente barato. Em geral, este método pode fornecer uma boa previsão para o curto prazo, mas não deve ser empurrado demasiado longe no futuro. Média Móvel Ponderada O método da média móvel pode ser ajustado para refletir mais de perto flutuações nos dados. No método da média móvel ponderada, os pesos são atribuídos aos dados mais recentes de acordo com a seguinte fórmula: Os dados de demanda para PM Computer Services (mostrados na tabela para o Exemplo 10.3) parecem seguir uma tendência linear crescente. A empresa quer calcular uma linha de tendência linear para ver se ela é mais precisa do que as previsões de suavização exponencial e de suavização exponencial ajustadas desenvolvidas nos Exemplos 10.3 e 10.4. Os valores necessários para os cálculos dos mínimos quadrados são os seguintes: Usando esses valores, os parâmetros para a linha de tendência linear são calculados da seguinte forma: Portanto, a equação da linha de tendência linear é: Para calcular uma previsão para o período 13, Linha de tendência: O gráfico a seguir mostra a linha de tendência linear em comparação com os dados reais. A linha de tendência parece refletir de perto os dados reais - isto é, ser um bom ajuste - e seria assim um bom modelo de previsão para esse problema. No entanto, uma desvantagem da linha de tendência linear é que ela não vai se ajustar a uma mudança na tendência, como os métodos de previsão de suavização exponencial, ou seja, é assumido que todas as previsões futuras seguirá uma linha reta. Isso limita o uso deste método para um período de tempo mais curto em que você pode ser relativamente certo de que a tendência não vai mudar. Ajustes Sazonais Um padrão sazonal é um aumento repetitivo e diminuição da demanda. Muitos itens de demanda apresentam comportamento sazonal. As vendas de vestuário seguem os padrões sazonais anuais, com a demanda por roupas quentes aumentando no outono e no inverno e diminuindo na primavera e no verão, à medida que aumenta a demanda por roupas mais frias. A demanda por muitos itens de varejo, incluindo brinquedos, equipamentos esportivos, vestuário, aparelhos eletrônicos, presuntos, perus, vinho e frutas, aumentam durante a temporada de férias. A demanda do cartão aumenta em conjunção com dias especiais como Dia dos Namorados e Dia das Mães. Padrões sazonais também podem ocorrer em uma base mensal, semanal ou mesmo diária. Alguns restaurantes têm demanda mais elevada na noite do que no almoço ou nos fins de semana ao contrário dos dias úteis. Tráfego - daí as vendas - em shopping centers pega na sexta-feira e sábado. Existem vários métodos para refletir os padrões sazonais em uma previsão de séries temporais. Vamos descrever um dos métodos mais simples usando um fator sazonal. Um fator sazonal é um valor numérico que é multiplicado pela previsão normal para obter uma previsão ajustada sazonalmente. Um método para desenvolver uma demanda por fatores sazonais é dividir a demanda para cada período sazonal pela demanda anual total, de acordo com a seguinte fórmula: Os fatores sazonais resultantes entre 0 e 1,0 são, de fato, a parcela da demanda anual total atribuída a Cada estação. Esses fatores sazonais são multiplicados pela demanda anual prevista para produzir previsões ajustadas para cada estação. Calculando uma Previsão com Ajustes Sazonais A Wishbone Farms cria perus para vender a uma empresa de processamento de carne ao longo do ano. No entanto, sua alta temporada é obviamente durante o quarto trimestre do ano, de outubro a dezembro. A Wishbone Farms experimentou a demanda por perus nos últimos três anos, conforme mostrado na tabela a seguir: Como temos três anos de dados de demanda, podemos calcular os fatores sazonais dividindo a demanda trimestral total pelos três anos pela demanda total nos três anos : Em seguida, queremos multiplicar a demanda prevista para o próximo ano, 2000, por cada um dos fatores sazonais para obter a demanda prevista para cada trimestre. Para conseguir isso, precisamos de uma previsão de demanda para 2000. Nesse caso, uma vez que os dados de demanda na tabela parecem exibir uma tendência geralmente crescente, calculamos uma linha de tendência linear para os três anos de dados na tabela para obter uma Estimativa de previsão: Assim, a previsão para 2000 é 58.17, ou 58.170 perus. Usando esta previsão anual de demanda, as previsões ajustadas sazonalmente, SF i, para 2000 são comparando essas previsões trimestrais com os valores de demanda reais na tabela, eles pareceriam ser estimativas de previsão relativamente boas, refletindo tanto as variações sazonais nos dados e Tendência ascendente geral. 10-12. Como o método da média móvel é semelhante ao alisamento exponencial 10-13. O efeito no modelo de suavização exponencial aumentará a constante de suavização 10-14. Como a suavização exponencial ajustada difere da suavização exponencial 10-15. O que determina a escolha da constante de suavização para a tendência em um modelo de suavização exponencial ajustado 10-16. Nos exemplos de capítulo para métodos de séries temporais, a previsão inicial foi sempre assumida como sendo a mesma da demanda real no primeiro período. Sugira outras maneiras de que a previsão inicial possa ser derivada no uso real. 10-17. Como o modelo de previsão da linha de tendência linear difere de um modelo de regressão linear para previsão 10-18. Dos modelos de séries temporais apresentados neste capítulo, incluindo a média móvel ea média móvel ponderada, a suavização exponencial ea suavização exponencial ajustada, ea linha de tendência linear, qual você considera o melhor Por que 10-19. Quais as vantagens que a suavização exponencial ajustada tem sobre uma linha de tendência linear para a demanda prevista que exibe uma tendência 4 K. B. Kahn e J. T. Mentzer, Forecasting in Consumer and Industrial Markets, The Journal of Business Forecasting 14, no. A diferença entre a média móvel ea média móvel ponderada A média móvel de 5 períodos, baseada nos preços acima, seria calculada usando a seguinte fórmula: Com base na equação acima, o preço médio Durante o período acima mencionado foi de 90,66. Usando médias móveis é um método eficaz para eliminar flutuações de preços fortes. A principal limitação é que os pontos de dados de dados mais antigos não são ponderados de forma diferente dos pontos de dados próximos ao início do conjunto de dados. É aqui que as médias móveis ponderadas entram em jogo. As médias ponderadas atribuem uma ponderação mais pesada a pontos de dados mais atuais, uma vez que são mais relevantes do que pontos de dados no passado distante. A soma da ponderação deve somar 1 (ou 100). No caso da média móvel simples, as ponderações são distribuídas igualmente, razão pela qual não são mostradas na tabela acima. Preço de Fechamento da AAPL
Comments
Post a Comment